bolt
Try our new interface for solving problems
Problems

Diagonals

Four points \textbf{A}\textit{(}\textbf{x_1}\textit{; }\textbf{y_1}\textit{)}, \textbf{B}\textit{(}\textbf{x_2}\textit{; }\textbf{y_2}\textit{)}, \textbf{C}\textit{(}\textbf{x_3}\textit{; }\textbf{y_3}\textit{)}, \textbf{D}\textit{(}\textbf{x_4}\textit{; }\textbf{y_4}\textit{)} are the vertices of parallelogram. Determine the length of the diagonals and find the coordinates of their intersection. \includegraphics{https://static.e-olymp.com/content/c0/c04d98829be9f2f3b292891a9cc81938d1159546.jpg} \InputFile In \textbf{4}-lines through the gap defined x and y coordinates of successive peaks parallelogram, respectively points \textbf{A}, \textbf{B}, \textbf{C} and \textbf{D}. All numbers in absolute value does not exceed \textbf{100}. \OutputFile The first line print after a gap of \textbf{x} and \textbf{y} coordinates of the point \textbf{O}, in the second - print the length of the diagonal \textbf{AC} and through a gap - \textbf{BD}. The results lead to three decimal.
Time limit 1 second
Memory limit 64 MiB
Input example #1
4 6
11 6
10 2
3 2

Output example #1
7.000 4.000
7.211 8.944

Input example #10
-100 100
100 100
100 -100
-100 -100

Output example #10
0.000 0.000
282.843 282.843